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Abstract. In modelling ionic crystals with the rigid-ion model under the adiabatic and 
harmonic approximations, the series involving the long-range Coulomb forces appear to be 
only conditionally convergent. The approach most commonly used to sum these series is the 
Ewald method, which separates them into two rapidly convergent parts in real and reciprocal 
space. Instead, the technique described here makes use of infinite sheets of charge to cancel 
effectively the long-range moments of these forces. The original series can then be rewritten 
in a form which rapidly converges, but still only in real space. The new method was tested 
by successfully duplicating Kellermann’s model results, which made use of the Ewald 
method. The new technique is restricted to lattice dynamical problems as opposed to static 
problems but may be applied to any crystal lattice and incorporated into any lattice dynamical 
model which also makes use of the harmonic approximation. 

1. Introduction 

The long-range Coulomb forces in an ionic crystal give rise to sums which are apparently 
only conditionally Convergent in the rigid-ion model [l] of lattice dynamics. The Ewald 
method [ 1-31 is the most commonly used to transform these sums into rapidly converging 
series in both real and reciprocal space. This is achieved by dividing each sum into one 
which approximates the ions by Gaussian charge distributions. and another which is the 
difference between this and the point charges of the model. A difficulty is that the terms 
of these new series are themselves not directly evaluable, as they include the error 
integral. 

A technique is introduced here which allows the sums to be taken only over real 
space, where the individual terms of the new series can be exactly evaluated and the 
series is rapidly convergent. Other methods, such as that used in [4], exist, which allow 
the sums to be taken only in real space. These other methods have not, however, been 
widely used as they are difficult to work with. 

Use is made in the new technique of the fact that, in a dynamical model under the 
harmonic approximation, only the double derivatives of the potential are involved. An 
infinite sheet of charge has a potential whose double derivatives are identically zero. It 
is therefore possible to introduce imaginary sheets of charge into a crystal without 
affecting the numerical results of a vibrational model calculation. 

f Present address: Institut fur Theoretische Physik, Freie Universitat, Berlin, Arnimallee 14, D-1000 Berlin 
33, Federal Republic of Germany. 
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Given a plane wave in a crystal, the ions can be naturally ordered into planes. Each 
plane is defined to consist of similar ions which share the same phase with respect to the 
wave. An infinite sheet of charge of opposite charge density can be superposed onto 
each plane of ions. Each ion is then at the centre of an associated section of charge 
sheets. Such entities have no total charge and no dipole moment. The sums now only 
involve quadrupole fields, which are short range. This allows the sums to converge and 
is the basis of the new method. If the associated sections of charge sheet for each ion are 
chosen to be parallelograms, the potential derivatives required for the dynamical matrix 
can be written in closed form. 

Our approach is not restricted to cubic crystals. No special consideration is required 
to deal with the case of long waves: only the understanding that the results obtained are 
to be interpreted as finite limits as the wavelength approaches infinity. The method may 
only be applied to lattice dynamical problems where the harmonic approximation is 
used, but nevertheless most extensions to the rigid-ion model (such as the shell model 
for polarisable ions [3]) are suitable for its use. 

2. Details 

In the rigid-ion model [l] under the harmonic and adiabatic approximations, the 
equations of motion for a crystal are of the form 

where the displacement from equilibrium of ion K in unit cell 1 is 

are the double derivatives of the inter-ionic potentials defined as 

1 .  

1 I' d 2 q  
q w p  [ ,  = 

duff [I] [:.I 
If, for convenience, the crystal is assumed to be infinite (or Barn-von Karman boundary 
conditions are used) its modes of vibration can be written as plane waves of wavevector 
q and frequency U: 

The equations of motion may now be written 

The sums of interest are those over the unit cell 1'. These sums cover the entire volume 
of the crystal and therefore cause difficulties if the inter-ionic potentials do not fall away 
quickly enough with distance for the sum to be convergent. 
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Separating the crystal potential into short-range repulsive terms q R  and long-range 
Coulomb terms qion allows the Coulomb contribution to the lattice dynamics to be 
treated in isolation. In any standard model of an ionic crystal, the Coulomb force is the 
only significant long-range force. 

To discuss the Coulomb contribution to the sum & in (1), we consider the component 

and imagine its terms grouped according to the value of the phase q * R(1'). Each 
q - R(l ' )  = constant = @ p ,  say, defines a lattice plane and this effectively divides the 
crystal into parallel planes, all perpendicular to the wavevector q. We may then sum first 
over the I '  within a plane P and then sum over all planes 

(If the wavevector is null, all directions are equivalent; so the planes may be chosen to 
be perpendicular to any convenient direction.) Each plane contains a two-dimensional 
Bravais lattice of ions and we may use the primitive vectors a,  b in the plane to define 
parallelograms of equal area, centred on each ion, as in figure 1. 

Finally, in each infinite plane P ,  we superpose a fictitious uniform charge of density 
(5 opposite to the ionic charge density: 

0 = -Z(K')e//u x bl 

where Z(K')e is the charge on ion K ' .  This is permissible as only the double derivatives 
of the potential are required for the dynamical matrix, and these double derivatives are 
all identically zero for an infinite sheet of charge. (For example, if q points along O z ,  
the potential of unit charge at z due to the density (5 is V = t ( a / 2 ~ ) 2 ,  and all its second 
derivatives vanish.) If 

0 I' 
qpar [ ] 

K K' 

refers to the potential of the parallelogram associated with the ion r:] and the ion [ 01 , 
then 

0 I' 

I '  E P K 1' 

Figure 1. Plane of similar ions and constant phase 
q R(I ) ,  divided into elementary parallelograms. 
Each parallelogram is uniformly charged, with a 
charge opposite to the central ion. This infinite 
sheet of charge makes no contribution to the 
dynamical matrix, but the field due to each par- 
allelogram and its ion falls off rapidly with increas- 
ing distance. 
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and therefore 

may be added to S without affecting its value. 
The ion-parallelograms so constructed have no net charge and no dipole moment. 

Together they contribute to the double derivatives of potential as the inverse fifth power 
of distance and thereby ensure rapid unconditional convergence of the sums. Further, 
as shown in the Appendix, closed-form expressions may be obtained for the potential 
derivatives due to a parallelogram. 

The equations of motion can now be written 

3. Duplication of Kellermann’s results for NaCl 

To test the new method of evaluating lattice Coulomb sums, it was decided to attempt 
to duplicate the results of a well known model of a simple ionic crystal. Kellermann’s 
model of NaCl[2] was chosen. Mode frequencies were calculated in the [OOl], [110] and 
[ l l l ]  directions. 

To evaluate the Coulomb sums, planes perpendicular to each direction of the 
wavevector needed to be identified. As these planes are defined to contain only cor- 
responding ions within the crystal’s basis, and NaCl is composed of interpenetrating FCC 
lattices, the planes were chosen from the FCC lattice. They are illustrated in figure 2, 
where the parallelograms surrounding each ion are also shown. For each of the three 
directions, the primitive vectors used to define the parallelograms were as follows: in 
the [OOl] direction, ( y o ,  ro,  0) and ( - y o ,  ro, 0); in the [110] direction, ( O , O ,  2ro) and ( -ro,  
ro, 0); in the [ l l l ]  direction, (ro,  -ro, 0) and (0 ,  - y o ,  r o ) ;  ro is the nearest-neighbour 
separation. Thesevectors are not uniquely determined for any given crystal and wavevec- 
tor but must be real lattice vectors perpendicular to the wavevector q.  The number of 
ion-parallelogram combinations included in the summing was left as a variable. The 
ion-parallelogram combinations to be included would be found within a cube centred 
on the ion that they were influencing. The size of the cube was used to control the extent 
of the summing. 

At a rough estimate, the error caused by restricting the sums to a volume of the 
crystal bounded by a sphere of radius R should be proportional to 

So, doubling the radius of the sphere of included ions reduces the error fourfold. 
The short-range repulsive forces were treated exactly as in Kellermann’s paper, using 

the same numerical values for the appropriate constants. As the purpose here is to try 
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Figure 2. Planes of constant phase q . R(I) for sev- 
eral directions in NaCl (FCC lattice): ( a )  [loo], ( b )  
[1101, (c) [ I l l ] .  

the Coulomb summing technique, it is necessary to agree in every other detail with 
Kellermann’s model. 

The dynamical matrix was constructed and its eigenvalues found for wavevectors in 
the three directions considered. The dispersion curves are shown in figure 3. The 
frequencies agree with Kellermann’s to within the accuracy that he was working to (1%). 
Table 1 gives sample frequencies for the various wavevectors for comparison. 

Figure 4 shows the results of calculations where Coulomb sums were only extended 
to first- and second-nearest neighbours. The general form of the dispersion curves 
is correct, and the numerical values are close to Kellermann’s results. Some of the 
degeneracies which should occur are not, however, present. This is because the trunc- 
ation errors in the Coulomb summing reflect the symmetry of the cube of summed sites 
and the shape of the individual parallelograms rather than that of the wavevector and 
the crystal. Incomplete summing would therefore be expected to break the symmetry 
properties of the solutions in general. 

On testing the effects of different extents of summing on the frequencies, it was 
found that the cube side lengths of 7ro were adequate to allow an accuracy of better than 
1% for the [llO] and [ l l l ]  directions. This corresponds to the inclusion of 342 ion- 
parallelogram pairs. In the [110] direction, the results were more sensitive to truncation 
errors. A cube side length of l l r o  was required to achieve an error well below 1%. This 
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LO 001 10011 11101 10001 L0.5 0.5 0.51 

Figure 3. Dispersion curve for Kellermann’s model of NaCI, calculated using the new 
summing technique. 

corresponds to 1330 ion-parallelogram pairs. This greater sensitivity was perhaps due 
to the relative lack of symmetry in that direction. 

Table 2 compares the convergence of the Ewald method and the new method for the 
particular point [l, 1, 01 0.4. The parameter E in Kellermann’s paper (his equation 
(5.10)) was given the value 0.1 (a choice that yields good results for the Ewald method) 
and the following notation is used: 

The point [0.4,0.4,0] was selected because it is a direction in which the new method has 
‘trouble’ getting the symmetry correct and because it is a value tabulated by Kellermann. 

Table 1. Comparison of mode frequencies at some representative wavevectors in important 
symmetry directions. For each wavevector the new method’sresultsare shownfirst, followed 
on the next row by Kellermann’s results. All mode frequencies are in units of l O I 3  rad s - ’ .  

[OOOI 0.00 0.00 0.00 2.86 2.86 6.02 
0.00 0.00 0.00 2.86 2.86 6.01 

[0041 1.02 1.02 1.91 2.92 2.92 5.45 
1.03 1.03 1.90 2.94 2.94 5.44 

[0011 1.77 1.77 3.10 3.09 3.09 4.20 
1.77 1.77 3.10 3.09 3.09 4.20 

[0.40.40.0] 1.65 2.39 1.69 2.48 3.03 5.09 
1.65 2.39 1.69 2.49 3.03 5.09 

[I101 1.77 1.77 3.10 3.09 4.20 3.09 
1.77 1.77 3.10 3.09 4.20 3.09 

[0.50.50.5] 1.93 1.93 3.64 2.39 2.39 4.52 
1.93 1.93 3.64 2.40 2.40 4.52 
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I 

.5 0.51 

Figure 4. Dispersion curve calculated to second-nearest neighbours only. 

The number of sites Ninvolved is related to the index n by N = (2n + 1)3, the last value 
n = 10 therefore corresponding to 9261 sites. On the basis of these results, the method 
appears to have significantly improved convergence properties over the Ewald method. 

Table2. Comparing the convergence of Coulomb sums by Ewald’s and by the present method 
at the point [ l ,  l,O] 0.4: U,, volume of unit cell. 

X Y  2 2  

Ewald’s method ( E  = 0.1) 
1 -0.2963 -3.8374 0.6095 2.7580 2.7850 -5.5338 
2 -1.1348 -5.8624 2.2725 3.3062 4.4591 -6.6096 
3 -1.1717 -5.2966 2.3740 3.3502 3.9240 -6.7313 
4 -1.2036 -5.1186 2.4233 3.3824 3.7309 - 6.7787 
5 -1.2167 -5.1237 2.4424 3.3941 3.7391 -6.7989 
6 -1.2023 -5.0874 2.4356 3.3804 3.7001 -6.7915 

- 6.8036 
8 -1.2138 -5.0914 2.4449 3.3918 3.7052 -6.8010 
9 -1.2197 -5.0930 2.4466 3.3976 3.7073 - 6.8028 

10 -1.2225 -5.0933 2.4474 3.4006 3.7074 - 6.8035 

7 -1.2237 -5.1173 2.4471 3.4013 3.7315 

Present method 
1 -1.3769 -4.6742 2.7538 3.5074 3.3708 -7.0147 
2 -1.2619 -5.5259 2.5239 3.4545 4.1408 -6.9090 
3 -1.2314 -5.1876 2.4628 3.4081 3.8079 -6.8161 
4 -1.2248 -5.1002 2.4495 3.4029 3.7134 - 6.8058 
5 -1.2240 -5.1067 2.4480 3.4021 3.7216 -6.8041 
6 -1.2238 -5.0877 2.4475 3.4018 3.7009 - 6.8036 
7 -1.2238 -5.1067 2.4476 3.4019 3.7209 - 6.8037 
8 -1.2238 -5.0895 2.4475 3.4018 3.7033 - 6.8036 
9 -1.2238 -5.0935 2.4476 3.4018 3.7077 - 6.8037 

10 -1.2238 -5.0940 2.4476 3.4018 3.7080 -6.8037 
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The method introduced here clearly allows the Coulomb contribution to the 
dynamical matrix to be calculated accurately without the sums extending very far into 
the crystal. The farthest summing used in the calculation for figure 3 involved a cube of 
side length 11 times the nearest-neighbour distance. The fact that the sums converge so 
quickly (as was anticipated) is an indication that the Coulomb sums are in fact conver- 
gent. It would appear that cancellations of various sorts effectively reduce the range of 
the Coulomb force where lattice dynamics is concerned. A similar conclusion was 
reached in [4] at the end of their §II: ‘Hence, the effect of the other blocks is, for all 
practical purposes, negligible.’ 

4. Conclusion 

The new technique for Coulomb summing was applied successfully to the NaCl lattice. 
The method most commonly used for Coulomb summing is that devised by Ewald. It 
can be said that the new method has at least the following advantages over the Ewald 
(or ‘Sfunction’) technique. 

(i) It does not require summing in reciprocal space as well as real space. 
(ii) The integrals involved can all be exactly evaluated (the Ewald method makes 

use of the error function). 
(iii) The case of infinitely long waves may be treated as a finite limit of dynamical 

matrix elements rather than requiring a separate form of the equations. 

Further work is required to determine more clearly the relative merits of each 
approach. Of particular importance would be the relative efficiency of the methods as 
measured in truncation error per unit of computer time required by the program. 

The new method is restricted to lattice dynamical problems under the harmonic 
approximation but can be applied to regular lattices of any symmetry. The harmonic 
approximation is still widely used in models of lattice dynamics, such as the shell model 
for polarisable ions; so it should be noted that the new method is not tied to the rigid- 
ion model alone. 

Appendix 

With r denoting the relative displacement from ion 

and Z ( K ) e  the charge on ion K ,  the first and second derivatives of the Coulomb potential 
between the two point charges at equilibrium, are 

I 1’ z ( K ) z ( K ’ ) e ’ r w  
CPP [ ] = 4n&Or3 

K K’ 

and 
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Figure 5. Unit vectors defining the coordinate 
system used to evaluate the derivatives of the 
potentia! due to a parallelogram. The unit vector 
e3 is parallel to a X 6. 

A given ion in a two-dimensional Bravais lattice with basis vectors a and b (tlgure 1) will 
have an associated parallelogram defined such that it is centred on the ion, has sides U 

and b and has a uniform charge opposite to the ion. The double derivatives of the 
interaction potential are 

where the integral is over the area of the parallelogram. To evaluate this integral, it is 
convenient to work in a coordinate system based on the parallelogram (figure 5 ) ,  
choosing unit vectors e l / ( a ,  e31/a X b and e2 = e3 x e l .  The double derivatives of the 
potential in this system (indexed by e and q) may be related back to those in the usual 
coordinate system (indexed by a and p) by the orthogonal transformation 

where ( eE) ,  indicates the component a of the vector eE. Further, since is symmetric 
in 5 and q ,  and q p a r  obeys Laplace's equation (29q$y  = 0), it suffices to calculate only 
the derivatives corresponding to E ,  q = 11, 12, 13, 22 and 23. The five corresponding 
integrals are calculated by making use of the two-dimensional Green theorem. Setting 

we have 

1 

= Ibl sin 6 lo If(. - da - 4.b + Ib) -f(r + ha - 4.b + Ib)] dl,  

and 

I 
[lalf(r - 4.a - db + la) - /U1 f ( r  - ha + 4.b + la) 

= io 
+ lbl cos 6 f ( r  + la - 4.b + Ib) - Ibl COS 6 f ( r  - ;U - MJ + lb)] dl. 
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The integrals to be calculated are all of the form 

U,(U* + U U - v,(u2 + U' U) - +  
U 2 U 2  - /U * U12 IU 4- UI U 

1 U q  + lv, 

If u2u2 = (U u ) ~ ,  then the above form is inappropriate. In this case, U and U are parallel, 
say U = Ku, and 

All the remaining cases where the denominators vanish correspond to the integration 
beginning or ending at the origin. In such cases the 'origin' must be at the centre of four 
ions. If the four separate parallelograms (which all belong to the one infinite sheet) are 
fused back into one larger one, then the integrals can be evaluated since the origin will 
no longer be at a corner. This fusing together of sections of charge sheet is in any case 
of use in avoiding unnecessary integrals along common edges. This last fact would be 
exploited by any efficient implementation of the Coulomb summing method described 
here. 

Inspection of the original integrals shows other special cases where they appear 
divergent. In particular, it is not obvious how these integrals could be performed if a 
parallelogram includes the origin. The assignment of values to the integrals in all these 
cases must then be understood in the sense of finite limits as these special cases are 
approached. 
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